关于三维坐标转换参数的讨论
一、引 言
三维直角坐标转换中,采用7参数Bursa2Wolf 模型、Molodensky 模型和武测模型[1 ] ,当在两坐标系统下有3 个公共点,就可惟一解算出7个转换参数;多余3个公共点时,就要进行平差计算,转换参数的初值(特别是旋转角) 的大小,直接影响平差系统稳定性和计算速度,有时使得解算的参数均严重偏离其值[2 ] 。随着移动测图系统(Mobile Mapping System ,简称MMS) 技术的成熟和应用,对运动载体(飞机、轮船、汽车等) 姿态的测量( GPS + INS) 也越来越多[3~5 ] ,任意角度的3 维坐标转换计算也越来越多。在平台上安装3 台或4 台GPS 接收机,来确定运动载体的位置和空间姿态,这时的旋转角可以说是任意的,取值范围是- 180°至180°,就需要准确计算转换参数模型,适应于任意旋转角的坐标转换。
本文在解释坐标转换的物理意义的基础上,导出3 维坐标转换7 参数直接计算的模型,以旋转矩阵的确定为核心,导出了3 点法和4 点法(两坐标系统下公共点数) ,用反对称矩阵和罗德里格矩阵性质推出的公式严密,该模型计算速度快。
二、三维坐标转换的物理意义和数学模型
1. 物理意义
如图1 所示,在两坐标系统下有4个公共点,在不同坐标系统内, 看成四面的刚体, 如图1(a) , (b)坐标转换的物理意义就是通过平移、旋转和缩放,使两个刚体大小和形状完全相同。具体过程是,设公共点1 为参考点,将图1 (b) 坐标轴和刚体平移,与对应的图1 (a) 刚体的点1 重合,如图1 (c) , 平移量为[ u v w ]T;然后以点1 为顶点,绕3 轴旋转,使两坐标系统的坐标轴平行, 以参考点为顶点的边重合,其他各边平行,两刚体是相似体,只是大小不同,如图1 ( d) ; 最后进行缩放, 使两刚体大小也相同。这样两坐标系统和3 个轴重合,原点统一,从而形成坐标系统转换。
了解更多内容,参见:pan.baidu.com/s/1sjGtZJ3
声明①:文章部分内容来源互联网,如有侵权请联系删除,邮箱 cehui8@qq.com
声明②:中测网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。
加群提示:我们创建了全国32个省份的地方测绘群,旨在打造本地测绘同行交流圈,有需要请联系管理员测小量(微信 cexiaoliang)进群,一人最多只能进入一个省份群,中介人员勿扰